Синхронные
|
Синхронные безщеточныеГенераторы с компаундным возбуждением к компенсирующей емкостью
Наиболее простым по технической реализации является бесщеточный генератор с компаундным возбуждением и компенсирующей емкостью, подключенной к дополнительной обмотке. Такой генератор представляет собой явнополюсную синхронную машину с обмоткой возбуждения в роторе.
Обмотка возбуждения разбита на две секции, концы каждой из которых замкнуты через диод. Таким образом, индуцированный ток в обмотке возбуждения может протекать только в одном направлении, создавая постоянное магнитное поле.
Статор имеет две обмотки: основную и дополнительную. К основной обмотке подключается нагрузка. К дополнительной обмотке подключается компенсирующий конденсатор. Основная обмотка занимает 2/3 пазов статора, а дополнительная 1/3 пазов.
Работает генератор следующим образом. При начале вращения ротора тока в обмотках нет. Однако магнитопроводы статора и ротора имеют остаточную намагниченность. За счет последней в обмотках начинает индуцироваться ток. Так как за счет диодов ток в обмотке ротора может протекать только в одном направлении, магнитопровод ротора начинает намагничиваться. При этом вращающееся магнитное поле создаваемое ротором индуцирует в обмотках статора электродвижущую силу. Поскольку дополнительная обмотка статора нагружена на конденсатор, через нее начинает протекать переменный ток. Этот переменный ток создает переменное, но не вращающееся магнитное поле статора, которое индуцирует электродвижущую силу в обмотке ротора. Под действием этой электродвижущей силы в обмотке ротора возникает ток, который выпрямляется диодами и еще сильнее намагничивает ротор. Это в свою очередь вызывает увеличение электродвижущей силы и тока в обмотках статора, что в свою очередь еще сильнее намагничивает ротор. Процесс возбуждения развивается лавинообразно до входа магнитопроводов статора и ротора в режим насыщения. В основной обмотке статора возникает электродвижущая сила номинальной величины. Генератор готов к подключению нагрузки.
При подключении нагрузки к основной обмотке в ней появляется ток, который создает свое магнитное поле. Если бы возбуждение генератора осталось на прежнем уровне, то напряжение на его выходных зажимах снизилось бы по двум причинам: падения напряжения на внутреннем сопротивлении и смещения магнитного поля относительно оси обмотки статора. Однако обмотки статора расположены таким образом, что их магнитные оси повернуты на 90 градусов. За счет этого происходит поворот магнитного поля ротора в направлении основной обмотки, что увеличивает ЭДС индукции в ней. Чем больше ток основной обмотки — тем больше поворот магнитного поля ротора. Таким образом происходит стабилизация выходного напряжения генератора. Такой способ регулирования называется компаундным.
Генератор с компаундным возбуждением прост по конструкции, обладает малым весом и стоимостью, что обусловило его широкое применение в переносных бензиноэлектрических агрегатах («бензиновые электростанции»). В тоже время этому типу генераторов присущ ряд недостатков, а именно:
• генератор может быть только однофазным;
• в случае подключения к генератору нагрузки с нелинейным характером сопротивления (например, нагреватель, включенный через диод) процесс компаундирования нарушается - напряжение на выходе генератора может оказаться сильно завышенным.
• к.п.д. генератора относительно невысок, так как существенная часть энергии переменного магнитного поля теряется на перемагничивание магнитопроводов, работающих в режиме близком к насыщению.
|
Асинхронные В силу простоты конструкции асинхронные электрогенераторы более устойчивы к короткому замыканию и более устойчивы к перегрузкам, выходное напряжение имеет меньше нелинейных искажений. Применение асинхронного генератора позволяет запитывать от агрегата не только промышленные устройства, не критичные к форме входного напряжения, но и электронную технику. Асинхронный генератор идеальный источник тока для подключения активной, или омической, нагрузки: ламп накаливания, бытовых электроконфорок, электронагревателей, электронных устройств, включая сварочные преобразователи, компьютерную и радио-технику и т.д. При подключении электромоторов и прочих индуктивных нагрузок необходим запас по мощности в 3-4 раза (при использовании функции СТАРТОВОЕ УСИЛЕНИЕ - в 1,5 - 2 раза). Перегрузка этих генераторов не допустима.
Синхронный генератор
Данный тип генератора способен кратковременно, не более 1 сек., выдавать ток в 3-4 раза выше номинального и вырабатывает более "чистый" ток. Поэтому синхронный генератор рекомендуется использовать для питания индуктивных потребителей с т.н. "пусковыми токами" (электродвигателей, насосов, компрессоров, дисковых пил, прочего электроинструмента), а также для подключения сварочного аппарата.
Кстати, на стабильность напряжения оказывает влияние и класс двигателя, а именно его способность поддерживать постоянные обороты (как правило, 3000 об/мин) при изменениях нагрузки, наличие специальных систем стабилизации , в частности AVR (автоматический регулятор напряжения).
Наконец, в качестве конструктивного исполнения более предпочтительны электрогенераторы, не оборудованные щетками, так как они не требуют обслуживания и не создают помех.
|
Асинхронные сварочные
|